Environment – Aircraft Technology Assessment

Presented to: Public Meeting for Center of Excellence

for Alternative Jet Fuels and Environment

By: Rhett Jefferies, CLEEN Program

Manager, Federal Aviation Administration

Date: November 15, 2012

Accelerating technology development

Continuous Lower Energy, Emissions and Noise (CLEEN)

- 5 yr effort to accelerate technology commercialization
- Reduces aircraft fuel burn, emissions and noise
- 50% cost share; total FAA budget: ~\$125M

Ceramic Matrix Composite (CMC) Nozzle

- CMC Blade Tracks
- Dual-Walled Turbine Blade
- Future alt fuels

TAPS II Low NOx Combustor

Adaptive Trailing Edge

Ultra-high Bypass Ratio Geared Turbofan

Open Rotor

- Lighter weight, higher temp engine
- 100% Hydroprocessed Renewal Jet (HRJ) alt fuel engine tests
- Flt Mgt Sys / Air Traffic
 Mgt Sys Integration

Boeing | GE | Honeywell | Pratt & Whitney | Rolls-Royce

CLEEN Program Goals

Develop and demonstrate (TRL 6-7) certifiable aircraft technology

CORNERS OF THE TRADE SPACE	CLEEN (N+1) (EIS 2015-18) Ref: B737/CFM56-7B	N+2 (2020)* Ref: B777-200/GE-90	N+3 (2025)*		
Noise (cum below Stage 4)	-32 dB	-42 dB	-71 dB		
LTO NO _x Emissions (Below CAEP 6)	-60%	-75%	better than -75%		
Aircraft Fuel Burn	-33%	-50%	better than -70%		

^{*} Technology Readiness Level for key technologies = 4-6

2	010	10 2011 2012 2013 2014 2		20	015	2016	2017	2018	2019	2020		
		CLEEN				CLEEN II						

Role of Technology Assessment

- Develop tools for effective technology assessment
- Assess suitability, environmental benefits and impact of aircraft technologies & alternative fuels on
 - Aircraft performance
 - Fleet operations
 - Environmental and economic policy
 - Global climate change
- Evaluate production costs & timeframes for new aircraft designs
- Compare tool results with CLEEN company estimates
- Foster collaboration and consensus among academic, commercial and governmental institutions

Technology Assessment Criteria

- Vetted tools compatible w/ AEDT
- Environmental perf & benefits at aircraft & fleet level
- Can identify synergistic technologies
- Can refine models with proprietary data

Technology Effects on Vehicle

Fleet Level Implications

Technical Areas of Interest

- Conduct assessment & model V/V of environmental benefits of aircraft technologies & op concepts
- Explore, develop & demonstrate (via simulation) flight control algorithms
 & models that have potential to improve aircraft and fleet environmental performance
- Explore advanced tech options to leverage the more precise or enhanced performance properties of alternative jet fuels
- Explore advanced tech options & integration of new/existing tech to maximize environmental & energy performance
- Enhance component & sys level design modeling capabilities within the aviation environmental tool suite to examine aircraft & fleet level fuel burn, emissions & noise and related tradeoffs and interdependencies
- Conduct fleet & aircraft level analyses of new & existing aircraft tech combinations & how they will affect sys-wide environmental performance
- Transition results from aircraft tech assessment to enhance the aircraft design tools that are a part of the aviation environmental tools suite
- Evaluate production costs and timeframes for new aircraft designs

